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Figure 1. The presented screenshots where rendered at 1920x1200 resolution on a GTX 560 HW under 5 minutes using Irradiance 
Caching (IC) technique. We achieved from 5 to 15 times acceleration compare to our naive path tracing implementation.  
 
 

Abstract 
This work proposes a GPU friendly irradiance caching (IC) 
solution, where performance critical parts of an irradiance cache 
algorithm are done completely on the GPU. We discuss some 
practical problems arising in the implementation of GPU 
irradiance caching, and propose solutions for them. The modified 
algorithm for the GPU is different from a CPU implementation in 
2 ways. The first distinction is a multi-pass construction of 
irradiance cache followed by a final rendering stage and the 
second distinction is to insert a large record set at once instead of 
one by one, as used in traditional approaches. We also consider 
some details to efficiently implement look-up operations on the 
GPU. 
Keywords: GPU, Irradiance Cache, Global Illumination. 

1. INTRODUCTION 
For the last decade Graphics Processor Units (GPUs) have made a 
great advance in performance and have become fully 
programmable processors. Several commercial GPU 
photorealistic renderers are available today. Most of them use 
unbiased path tracing methods in order to minimize intermediate 
data creation (photon maps, lightcuts, etc). This results in tracing 
up to ten times more rays than biased alternatives. Moreover, path 
tracing of complex scenes suffers from highly irregular workload 
(per ray)and memory access tends to be random. These issues lead 
to inefficient hardware utilization. On the other hand, although 
biased approaches have lower complexity they are more difficult 
to implement on the GPU.  
Our paper illustrates the research that we have performed for GPU 
accelerated biased rendering via irradiance caching and path 
tracing techniques. The key results of this research are: 
� A new GPU friendly IC generation algorithm, performed 

before final render pass. 
� Introduction of a new method for records insertion into 

octree-based cache for fast irradiance interpolation on the 
GPU.  

Our main contribution is a high quality IC solution that provides 
from 5 to 15 times acceleration  (with an average PSNR of 40 
compared with a GPU accelerated path tracing. 

2. RELATED WORK 

2.1 GPU ray-tracing 
Although fast GPU ray tracing for complex scenes is still a 
challenge we do not focus on ray tracing acceleration in this 
paper. Aila and Laine's work [Aila and Laine 2009] provides 
comprehensive performance analysis of ray tracing on the GPU. 
Our ray tracing implementation has approximately the same 
performance on diffuse rays (i.e. rays, randomly shot from the 
single point over the hemisphere) although it’s of 1.5x factor 
slower for coherent frustum tracing. However we have found that 
path tracing rays after several bounces can be from 2 to 4 times 
slower (than diffuse rays) – this is the case of poor HW utilization 
due to random memory access and non-uniform workload. 
2.2 CPU Irradiance cache 
Irradiance caching decreases the overall cost of indirect 
illumination computation by performing full hemisphere sampling 
(or final gathering) only at selected points in the scene, caching 
the results, and reusing the cached indirect illumination values 
between those points through interpolation. It was introduced in 
[Ward et al. 1988]. The algorithm can be summarized as follows: 
if interpolation is possible then 
  reuse cached values through interpolation; 
else 
  compute new value; 
  store it in the cache; 
end if; 
The number of irradiance cache points is usually of 1 - 2 orders of 
magnitude less than the number of pixels – so the irradiance cache 
is quite efficient and it can greatly speed up the whole rendering. 
However, IC is a challenging algorithm, even on a CPU. It has a 
lot of issues and heuristic approaches that  make it practical and 
suppress its artifacts [Krivanek et al. 2008]. A well-known 
irradiance cache algorithm [Ward et al. 1988, Krivanek et al. 
2008] cannot be implemented on a GPU in a straightforward way 
because of its serial nature: 
� Trace one ray 
� Evaluate and insert one record at given “transaction”.  
It is difficult to parallelize irradiance cache on multi-core CPUs, 
although there are several papers available regarding parallel 
irradiance caching on CPU ([Debattista et al. 2006, Dubla et al. 
2009]. These papers focus on solving the problem of sharing 

EN2: Graphics

Russia, Moscow, October 01–05, 2012 39



 

irradiance cache data structure between different CPU threads and 
different machines (cluster systems).  
However, the problem is not only in data sharing between threads 
and redistributing computational resources (for example between 
rendering and IC records evaluation), but it also in the fact that IC 
depends on the records insertion order. For example, irradiance 
gradients [Krivanek et al. 2008] rely on a serial records insertion. 
If one places two records in parallel near each other, the gradients 
and, as a result, validity radiuses of these records will be different 
compared to serial insertion. The more threads run in parallel, the 
more serious this problem becomes so we introduce validity 
clamping heuristics to solve it in our GPU implementation. 
PBRT 2.0 [Pharr and Humphreys 2010] has multithreaded 
implementation of IC. It does the first pass to compute the cache 
and the second one to render final image. This  approach needs to 
be refined for the case of massive parallelism. 
2.3 GPU Irradiance cache  
GPU irradiance caching was introduced in [Gauton et al. 2005] 
and described in details in [Krivanek et al. 2008]. These papers 
mainly focus on replacing irradiance interpolation via octree 
lookups with splatting to avoid traversing hierarchical structures 
on GPUs. The approach used in [Gauton et al. 2005] can be used 
for primary rays or interactive visualization in computer games, 
however, it has one serious limitation: only one light bounce can 
be evaluated either for hemisphere sampling or for final rendering. 
Thus, it will be hard to have precise photorealistic result with this 
approach. Besides, it was done mainly for rasterization based 
engines and cannot be combined directly with a GPU path tracer.  
Wang et al. [Wang et al. 2009] presents an efficient approach for 
global illumination using photon mapping on the GPU. The key 
aspect of this work is to use irradiance cache with photon 
mapping and final gathering [Jensen et al. 2002] to quickly 
compute smooth indirect illumination. Direct lighting is computed 
using ray tracing and supports hard shadows from point light 
sources. In this paper irradiance cache point positions are 
predicted from the geometry discontinuities. Wang’s approach to 
build IC was combined with path tracing in [Frolov et al. 2011] to 
focus on rendering images with glossy reflections and shadows 
offline. However, both of these approaches work with geometry 
term and they use predictive nature without further refinement.  
The radiance hints method introduces in [Papaioannou 2011] is a 
stable (for animation) and a fast solution for diffuse global 
illumination. The method is based on grid based radiance caching 
with reflective shadow maps and can handle multiple light 
bounces. This method works for interactive rendering with view-
independent algorithm so it can’t control image error that is 
strictly needed for photorealistic rendering. Besides, using regular 
grid will not allow one to have high precision with reasonable 
memory consumption. 

3. SUGGESTED APPROACH 
Similar to PBRT 2.0 our algorithm consists of 2 main phases. The 
first phase is “irradiance cache creation” and the second phase – 
“final rendering”. The goal of the first phase is to generate a set of 
irradiance cache points that will completely cover the space where 
future samples can occur. This separates computing irradiance 
cache from using it.  
3.1 Creation of irradiance cache 
IC creation process consists of multiple passes (20-30 passes, the 
maximum number is user controlled). It can be summarized in the 
following pseudo code: 

procedure Create_IC(ic : out Irradiance_Cache) is 
  geomDiscMap  : Image; 
  irradDiscMap : Image; 
  discMap      : Texture2D; 
  candidates   : array of IC_Record; 
  smallGroup   : array of IC_Record; 
  candGroups   : array of (array of IC_Record); 
  iterNum      : Integer; 
  -- user controlled 
  MAX_PASS_NUMBER   : Integer := 30;  
  MIN_CAND_TRESHOLD : Integer := 100;  
begin 
  geomDiscMap := CreateGeometryDiscMap(); 
  discMap     := Build2DMipMapChain(geomDiscMap); 
  candidates  := Dithering(discMap); 
   
  ic.Insert(candidates); 
  iterNum := 0; 
  candidates.resize(MIN_CAND_TRESHOLD+1); 
   
  while(candidates.size() >= MIN_CAND_TRESHOLD and 
        iterNum < MAX_PASS_NUMBER): 
 
    -- screen space stage     
    irradDiscMap := CreateIrradianceDiscMap(); 
    discMap := Build2DMipMapChain(irradDiscMap); 
    candidates := Dithering(discMap); 
     
    -- insert candidates except for pixels 
    -- for which we already have records 
    ic.Insert({candidates} \ {ic.records});  
 
    -- world space stage 
    candidates := SelectIfInterpErrorIsLarge(); 
    candidates := SortWithZCurve(candidates); 
    candGroups := GroupRecords(candidates); 
     
    candidates := [] 
    for group in candGroups: 
      smallGroup := SelectSeveralCands(group); 
      candidates.append(smallGroup); 
    end for; 
 
    ic.Insert(candidates); 
    iterNum := iterNum + 1; 
  end while; 
 
end Create_IC; 
 
The ‘Insert’ procedure also evaluates irradiance for each records. 
We will discuss its implementation later.  
Each pass consists of 2 independent stages. The first stage works 
only for visible points. The second stage works for visible and for 
points that are not directly visible from the eye. During each pass 
and within each stage new irradiance cache records are inserted 
into the cache. The very first pass is different from the others and 
works with geometry discontinuity like [Wang et al. 2009] and 
[Frolov et al. 2011] do. The important aspect of the irradiance 
cache generation process is that a large set of points (several 
hundred or even thousand points) are selected at once, irradiance 
for these points are computed on the GPU and these points are 
added to the cache structure in one transaction.  
3.1.1 The very first pass (coarse screen space pass) 
In the very beginning of the process of irradiance cache creation 
we have no information about the scene at all. Owing to this fact, 
the goal of this pass is to create first approximation of irradiance 
cache that will be used as a starting point for further passes.  Our 
algorithm tries to predict complexity of different screen parts, 
using geometry discontinuity maps and image processing. It 
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attempts to place more records in areas where more of them are 
needed.  
First, we trace rays from the eye position and store hit positions 
and normals in separate full screen textures. A mip-map pyramid 
for each of these textures is built. Then, each mip-level of surface 
discontinuity texture map is evaluated according to this formula: 
         surfDisc := k*normDiff + worldPosDiff; 
where worldPosDiff and normDiff is a maximum difference 
between positions (and normals accordingly) within neighboring 
pixels (in an appropriate mip-level). And k is a parameter that 
depends on the world scale. Having a discontinuity map, we blend 
all of up-scaled mip levels and perform the dithering algorithm on 
the resulting image with a binary quantization (i.e. each pixel in 
resulting image can have a value equal to 1 or 0). The result of 
this dithering is a binary image - a set of initial points; this initial 
set is our first approximation of irradiance cache (Fig. 2).   
The main idea behind that binary dithering is that it allows us to 
represent discontinuity maps (both geometry and irradiance) in 
terms of sparse point set – potential IC records.  
Dithering Implementation: 
Our dithering implementation is deterministic (but we suppose 
random or combined solution is also possible). For a given part of 
screen it decides (based on user defined threshold) whether we 
need to put irradiance cache record in each 32-d, 16-th, 8-th, 4-th 
or 2-d pixel. 
3.1.2 Screen space stage (1) 
The same operation but for irradiance discontinuity is performed 
in subsequent passes– calculate irradiance by fetching it from the 
cache, build difference image, create mip-map pyramid, blend up-
scaled images, perform dithering and insert newly obtained points 
into irradiance cache. This procedure is repeated several times. 
Because screen space solution stops producing new points 
relatively fast, we disable it after several (3-4) passes and continue 
creating the cache only with the world space stage. 
3.1.3 World space stage (2) 
The presented screen space algorithm works on primary visible 
smooth surfaces. However it cannot be used for indirectly visible 
surfaces and it tends to miss tiny geometric details. The red 
triangle on Fig. 3 represents viewers’ frustum. Red points are not 
visible from the camera, however secondary rays can still reach 
such regions. 
Our goal is, to generate a set of irradiance cache points that 
completely cover the space where rays can hit a surface during 
path tracing process. We used an idea similar to the clustering 
approach that had been used in [Gassenbauer et al. 2011].  
Rays are traced from the eye and all hit points are saved on each 
bounce if interpolation has unacceptable error estimation from 
geometric considerations. All such points are stored in separate 
buffer during ray tracing using CUDA ‘atomicAdd’ operation 
similar to how DirectX10/11 ‘append buffer’ works.  
However, a very large set of points is produced and we need to 
select a subset of the best candidates from it. We believe several 
approaches can be applied to form clusters; however we used the 
simple one that can be easily ported to GPU. At first, we  sort 
candidates according to 3D Z-Curve [Morton 1966]. After that  
we start inserting points into a cluster (around the first point in the 
sorted array). However we want to keep the bounding box of the 
current cluster within certain limits. If after inserting a point the 
bounding box of the current cluster exceeds the maximum 
bounding box size, we create a new cluster and continue inserting 
candidates into it. 

 
Next, it is possible to select a single point from each cluster with 
maximum error however it is not the best approach. Let us 
consider a cluster that was formed around the corner of the 
Cornell Box. The corner consists of 3 walls and if our cluster 
contains points on every wall, we need to select at least one point 
on each wall, otherwise we lose useful candidates, because we 
know that radiance difference usually corresponds to rapid 
changes of the normal field. So, from each cluster we select 
several candidates with unique normals and thus, deal with corner 
cases.   
We terminate the creation process when the maximum number of 
passes is reached or when ‘candidates.size()’ becomes small 
enough (this parameter is user defined). Due to the stochastic 
nature of our IC creation process (world space stage uses random 
‘path tracing style’ rays) on some complex scenes there can be a 
regions that were not covered by IC records and candidates are 
still produced. However, if we stop IC creation process in that 
case, it will not introduce a valuable error in the final image 
because the probability of rays hit such regions tends to be zero.   
3.2 Final rendering 
After we have irradiance cache computed we do adaptive path 
tracing as described in [Frolov et al. 2011] with fetching indirect 
smooth lighting from irradiance cache. Thus, for fast and smooth 
indirect lighting we use irradiance caching technique and we use 
path tracing for other effects, such as soft shadows, glossy 
reflections and refractions, depth of field and motion blur.  

4. IMPLEMENTATION AND RESULTS 
Our implementation is done using CUDA and C++. All 
performance critical parts of the algorithm are done in CUDA. 
However, such things as tree construction and some other 
algorithms are implemented in C++ on the host. 
4.1 Hemisphere sampling 
For irradiance computations we use the progressive evaluation 
algorithm with Monte Carlo path tracing. All irradiance cache 
records are placed in ‘active records list’. For each active record 
we use a sequence of randomly distributed (but coherent) 
hemisphere samples – 4096, 16384, 65536 and etc. At first we use 
4096 rays for all records in the list. If estimated error for a record 
is small enough we discard that record from ‘list of active records’ 
and process remaining records with 16384 rays (the next value in 
the sequence). We repeat this process until all records are 
evaluated or the maximum number of samples per irradiance 
record is achieved. Using the sequence of pre-generated samples 
instead of simple random rays is important because we can save 
rays coherency at least for the first bounce and have valuable 
speed-up (~ 2-4 times) for ray tracing on GPUs. 
To evaluate convergency for a record we use the approach 
described in [Krivánek et al. 2006] accumulating odd and even 
partial sums of lighting integral. 
We used ‘Hammersley’ sampling technique described in [Suffern 
2007] to cover hemisphere with samples.  To have more coherent 
groups of rays we used stratification (subdivide the hemisphere 
into sectors and generate 32*k rays for each sector where k >= 1). 
Actually we just need to group ‘Hammersley’ points in groups of 
size 32*k. Initially we do that on the CPU in tangent space. On 
the GPU we transform directions from tangent to object space to 
get correct hemisphere sampling.  
During the hemisphere sampling, we also calculate initial validity 
radius for each irradiance cache point using ‘sphere split 
approximation’ [Krivanek et al. 2008]. 

EN2: Graphics

Russia, Moscow, October 01–05, 2012 41



 

4.2 Insertion records into octree 
The insertion process is done on the CPU. Our implementation 
inserts a set of records in one transaction, and we modified the 
original insertion algorithm, described in [Krivanek et al. 2008] 
and [Pharr and Humphreys 2010]. 
procedure Insert (  
              self    : inout Irradiance_Cache; 
              records : in array of IC_Record ) is  
begin 
    EvaluateIrradiance(records); 
    self.auxOctree.Insert(records);  
  ValidityRadiusClamping(records, self.auxOctree); 
    self.mainOctree.Insert(records); 
end Insert; 
 
The problem with inserting multiple records is that in several 
cases, we can find a large set of closely-located records, with 
overlapping validity radiuses. This is a problem, because in those 
regions octree leafs will contain a large list of points and 
interpolation becomes slow. This motivated us to develop a 
special algorithm for decreasing validity radiuses during insertion. 
Our insertion consists of 3 phases. First, we consider irradiance 
cache records as points (not as spheres!) and insert them into an 
auxiliary octree. This octree will be used to speed-up location of 
k-nearest points (irradiance cache records). 
We call the second step ‘validity radius clamping’. It treats 
irradiance cache records as spheres. The goal of this step is to 
decrease validity radius for each point. For each irradiance cache 
record it locates k  nearest neighbors (k is 4-7) in ‘different 
directions’ and if the validity radius of the current point is greater 
than the distance to the farthest point, the validity radius is 
clamped to this distance. 
 

 
Figure 1: Angle criterion of filtering nearest neighbors. 

 
By ‘different directions’ we mean that while we look for 
neighboring points we calculate the angle between a new 
candidate and all the points that we have already found (Fig. 6). If 
the angle between the direction to a new point and any direction to 
a point we already found is too small, we do not consider this 
point, i.e. we do not add it into the nearest neighbors list. 
Last we also consider irradiance cache records as spheres. But 
validity radiuses of these records were clamped by the previous 
step. The goal of the last step is to insert all points into the final 
octree that will be used for fetching irradiance from the cache on 
the GPU. Validity radius clamping is an important part of the 
algorithm. Table 1 shows performance improvements gained by 
introducing our validity clamping approach.  
 

Scene IC1 IC2 look-up acceleration 

Teapot 29 ms 5.9 ms 4.9 times 
Dragon 18 ms 5.0 ms 3.7 times 
Conference 25 ms 4.4 ms 5.6 times 
Sponza 16 ms 7.1 ms 2.3 times 
Cry-Sponza 33 ms 8.3 ms 4.0 times 

Table 1. The column marked IC1 presents time (in milliseconds) 
required to perform one million look-up operations when validity 
radius clamping is disabled. The column marked IC2 presents 
time, required to perform one million look-up operations with 
enabled validity radius clamping. The last column represents 
acceleration factor. All measurements were done with GTX560 
HW. 
Thus, inspired by Krivánek’s Neighbor Clamping, we introduce a 
new validity clamping radius criterion in order to accelerate look-
up operation by means of density control.  
4.3 Fast Octree Look-Up 
We use interpolation formula proposed by Tabellion and 
Lamorlette in [Tabellion and Lamorlette 2004] and stackless 
octree look-up as described in [Krivanek et al. 2008]. We have 
found that the stackless approach is very efficient on GPUs if only 
several irradiance cache records are stored in octree leaves. The 
key advantage of the multiple reference octree is the stackless 
‘root to leaf’ look-up algorithm. To find all irradiance cache 
records, which validity radiuses overlaps with a given point, we 
need to traverse from the root to a leaf and then just iterate 
through the list of cache points we stored in a leaf.  

4.4 Results overview 
The results of our renderer are presented in Table 2. We target 
high quality images at 1920x1200 resolution and we used world 
space irradiance interpolation. As a result our irradiance cache 
contains a large record set (100K-200K). Due to the high 
precision requirements we usually start irradiance evaluation with 
4096 Monte-Carlo samples. The “Conference Room” scene has 6 
area lights under the ceiling and a significant part of rendering 
time was taken by soft shadows. Due to a weak indirect 
component in this scene path tracing converges fast enough and 
acceleration factor is lower (only 3 times) compared to other 
scenes. 
“Sponza” and “Crytek-sponza” scenes (in contrast to Conference 
Room) have strong indirect illumination and acceleration on these 
2 scenes was even higher (14 and 18 times accordingly) than 
expected. For example, having ~200K records for the last scene, 
one can't expect more than 1920*1200/200000 = 11 times 
acceleration. However we found that on some complex scenes 
(even disregarding total triangle count), like “Crytek-sponza” 
naive path tracing is inefficient and the ray tracing performance is 
far from 60M rays per second. As a result grouping rays to 
coherent packets, when sampling hemisphere, provides a great 
advantage for GPU ray tracing performance and for the “Sponza” 
and “Crytek-sponza” scenes we have super-linear acceleration.  
We calculated square error (with ‘The Compressonator’ 
[Compressonator]) and PSNR (with MatLab) metrics to have a 
numerical estimation of an image difference. PSNR, for HDR 
images, is much higher (than for LDR) because absolute value of 
the signal is higher on HDR images. 
4.5 Quality discussion and analysis 
For our current implementation we used Monte-Carlo path tracing 
to evaluate irradiance. We start from 4096 hemisphere samples 
with 2 path tracing bounces and continue to increase the number 
of samples with our progressive evaluation algorithm. In contrast 
to evaluating IC records, path tracing requires on average ~1000 
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4.5 Quality discussion and analysis 

For our current implementation we used Monte-Carlo path 

tracing to evaluate irradiance. We start from 4096 hemisphere 

samples with 2 path tracing bounces and continue to increase 

the number of samples with our progressive evaluation 

algorithm. In contrast to evaluating IC records, path tracing 

requires on average ~1000 samples per pixel. The produced 

noise is high frequency and it is filtered by the human eye. 

However, when we consider irradiance cache, the error will be 

splashed over the surface resulting in low frequency noise that 

appear to a human eye as “dirty spots” (Fig. 3).  To suppress 

these artifacts we use more samples per record. 

 
Figure 3: Top row: IC results produced with 1024 and 16384 

samples per record. The bottom row: magnified difference 

(x32) between corresponding IC result and path traced 

reference. 

4.6 Bottleneck analysis 

We have measured that during irradiance cache construction 

~80% of the time is spent on evaluating records (i.e. 

hemisphere sampling with Monte-Carlo path tracing) and it 

takes ~50-90% of the total rendering time. One way to reduce 

this time is to use fewer samples with one bounce. This will 

work much faster because on the first bounce we have coherent 

sets of rays (and the noise is less than for 2 or more bounces). 

However this will prevent us from computing indirect lighting 

from multiple diffuse bounces. Another choice is to use photon 

mapping with final gathering [Krivanek et al. 2008] instead of 

Monte-Carlo path tracing. We believe this idea should give us a 

performance benefit and we’ll investigate this in our future 

research. We also think that using recursive irradiance cache 

[Krivanek et al. 2008] is a promising idea; it allows tracing only 

coherent set of rays to transport light from one level of the 

cache to another (or even use rasterization).  

We perform interpolation in the world space and as a result the 

IC generation algorithm places a lot of records near tiny 

geometry details. We suppose screen space IC should be used 

for primary visible points.  

The octree construction (insertion of records) is not a bottleneck 

in our implementation; it usually takes ~15% of irradiance 

cache construction time. The remaining 5% of the time was 

spent on ray tracing during IC construction, building of 

discontinuity maps (both geometry and irradiance), data 
transfers between GPU and CPU. 

Regarding the final rendering, the irradiance cache look-up 

operation takes 20% in average of the total rendering time. The 

ray tracing (incoherent rays) takes 60-70% of this time and the 

rest is taken by the shading related works and pipeline 
overhead. 
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Scene Number of 
Triangles 

Number of  
IC records 

IC creation 
time 

Render 
pass time 

Total 
time 

Naive path 
tracing time 

Acceleration Square error 
(png) 

PSNR 
(png) 

Teapot 25612 27356 18s 35s 56s 300s 5.3 times 2.5 45 
Dragon 871426 71883 52s 36s 88s 490s 5.6 times 3.4 43 
Conference 331191 89336 64s* 108s 172s 500s 2.9 times 2.3 47 
Sponza 66456 161245 123s 17s 140s 1980s  14.1 times 3.9 41 
Cry-Sponza 262267 245369 228s 20s 248s 4632s 18.6 times 5.7 38 

Figure 4: Path tracing compare to our IC implementation. Difference brighter by 1600% (16 times).  
High Quality images and demo program available at http://ray-tracing.ru/upload/gc2012/sandbox.zip 

Table 2: Test setup. All scenes were rendered in 1920x1200 on GTX560 HW. For path tracing - max samples per pixel was 4000 (however, this 
number was reached for the 2 last scenes). Image difference and square error were computed with ‘The Compressonator’ tool [Compressonator]. 
For conference Room we started hemisphere evaluation with 1024 hemisphere samples (instead of usual 4096 samples) (*).  
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